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This paper investigates the stability properties of a Blasius boundary layer perturbed
by a small-amplitude steady three-dimensional distortion, which may be isolated or
periodic along the spanwise direction. It is shown that once the strength of the
distortion exceeds a threshold, the perturbed flow becomes inviscidly unstable. An
isolated distortion which features a dominant low-speed streak induces a localized
mode, while a periodic distortion supports spatially quasi-periodic modes through
a parametric resonance. The frequencies and growth rates of both types of mode
are much higher than those of the viscous Tollmien–Schlichting (T–S) waves. For
moderate distortions, the instability modes can be viewed as kinds of modified T–S
waves, which amplify at rates in excess of the viscous instability. For a localized
distortion, these modes do not reduce to the usual T–S waves in the zero-distortion
limit. The nonlinear development of the inviscid modes is also studied, and is found
to be governed by a slightly modified version of the evolution equation derived by
Wu (1993). A numerical study suggests that nonlinearity has a strong destabilizing
effect, and ultimately leads to an explosive growth in the form of a finite-distance
singularity. The present theoretical model is found to capture qualitatively some key
experimental observations.

1. Introduction
It is well known that the instability of boundary layers is sensitive to their profiles,

i.e. a small distortion to the basic flow may have a detrimental effect on its stability. The
main interest of the present paper (Part 1) and its sequel (Part 2, Wu & Choudhari
2003) is to investigate the mechanisms by which a relatively weak distortion can
significantly affect the instability of an otherwise uniform Blasius flow. Specifically,
we shall address two main issues: (a) how the Tollmien–Schlichting instability, which
operates in the absence of any distortion, is modified by a weak distortion, and (b)
whether or not a weak distortion is able to cause any inviscid instability.

Many factors can cause three-dimensional steady or unsteady distortions in the
form of streamwise (longitudinal) vortices or streaks. These include small steady
or unsteady perturbations superimposed on the oncoming flow, imperfections at
the leading edge, crossflow instability, Görtler vortices induced by surface curvature
as well as certain excitation devices. Distortion of this kind also arises due to
the nonlinear interaction between pairs of Tollmien–Schlichting (T–S) waves. The
resulting perturbed flows are spanwise-dependent but essentially unidirectional, i.e.
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the transverse velocity components are much smaller than the streamwise component.
The instability of such transversely sheared flows has attracted a great deal of interest
because it appears to be related to various aspects of the transition process, such as
secondary instabilities and by-pass transition.

In certain circumstances, the spanwise variation is more or less periodic. For
instance, in a boundary layer over a concave surface the Görtler instability drives a
secondary flow field of this form. Nayfeh (1981) showed that a resonant interaction
occurs between the Görtler vortex system and a pair of oblique T–S waves whose
spanwise wavelength is twice that of the Görter vortices. Low-amplitude vortices cause
a small modification to the T–S wave growth rate, which he approximated using a
multiple-scale method. The effect of vortices with a magnitude comparable with the
background Blasius flow was subsequently studied by Nayfeh & Al-Maaitah (1988)
using Floquet theory. This work as well as that of Nayfeh (1981) was based on a
finite-Reynolds-number formulation. Bennett & Hall (1988) employed high-Reynolds-
number approach to analyse the secondary instability of Taylor–Görtler vortices in a
curved channel to disturbances on the lower-branch T–S wave scales. The secondary
instability on the T–S scales is of course not the only possibility. Depending on the
strength and wavelength of the vortices, other possibilities arise. For instance, small-
wavelength Görtler vortices as described by Hall & Latkin (1988) support secondary
modes that are trapped in the shear layers where the vortices concentrate, as was
shown by Hall & Seddougui (1989). The boundary layer perturbed by Görtler vortices
with wavelength of the boundary-layer thickness and magnitude comparable with the
Blasius flow is unstable to inviscid Rayleigh modes (Hall & Horseman 1991). The last
three papers focused on the resonance of fundamental type, for which the spanwise
wavelength of the secondary modes equals that of the Görtler vortices.

The resonant interaction of the kind considered by Nayfeh (1981) operates in
more general settings. Goldstein & Wundrow (1995) investigated the role of such
an interaction for a mean-flow distortion that is generated by imposing a crossflow
at a distance L from the leading edge. The spanwise wavelength Λ is taken to be
much larger than the boundary-layer width, that is, σ = Λ/(R−1/2L) � 1, where R

is the Reynolds number based on L. They show that at distances of O(Lσ 3) from
the location of forcing, the perturbed mean flow becomes inflectional for a suitably
chosen magnitude of the imposed crossflow. A pair of oblique instability modes with
a spanwise wavelength 2Λ may then develop on an inviscid length scale due to their
resonance with the distortion. On a purely linear basis, this instability ultimately dies
out sufficiently far downstream. However, if the modes attain a threshold magnitude
before the final decay, they may interact nonlinearly. Their subsequent development
was found to be governed by the amplitude equation derived by Goldstein & Choi
(1989) and Wu, Lee & Cowley (1993).

A distortion of particular interest occurs when the boundary layer is subject to a
relatively high free-stream turbulence level. As was first observed by Dryden (1936)
and Taylor (1939), small low-frequency three-dimensional perturbations in the free
stream produce significant distortion within the boundary layer, leading to alternate
thickening and thinning of the layer along the spanwise direction. Steady disturbances
also cause the same type of variation (Bradshaw 1965). Recent experimental studies
show that the distortions are in the form of elongated streaks (see e.g. Kendall 1985
Westin et al. 1994 Matsubara & Alfredsson 2001; and references therein). Such streaks
are now commonly referred to as Klebanoff modes, as a tribute to the contribution
of Klebanoff (1971) (despite the fact that mathematically they are not related to
modes of any eigenvalue system). The above-mentioned experiments, along with
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those of Blair (1992) and Roach & Brierley (1992), have provided fairly complete
quantitative data about the characteristics of Klebanoff modes themselves. However,
the instability of the streaks and its role in the transition process remain to be fully
understood, though the flow visualization in Matsubara & Alfredsson (2001) provides
some important clues. The main obstacle of course is the random nature (in both
time and space) of the free-stream disturbances and the associated Klebanoff motion,
which make a quantitative study extremely hard. Numerous researchers have instead
chosen to investigate the steady distortions that are induced in a controlled manner.

Hamilton & Abernathy (1994) used surface roughness elements to create a single
or multiple streamwise vortices. These vortices cause the distorted flow profile to have
an inflection point. An inflection point, however, does not always lead to inviscid
instability. Only when distortion exceeds a certain critical magnitude do localized
inviscid instability waves start to appear. These waves may decay or occasionally
develop into turbulent spots if the distortion strength is just above critical. As the
distortion is increased further, the local instability leads to persistent self-sustaining
turbulent spots.

Asai, Fukuoka & Nishioka (2000) and Asai, Minagawa & Nishioka (2002)
investigated in detail the instability of an isolated streak, which was produced by
a small screen set normal to the wall. The low-speed streak is shown to support both
symmetric (varicose) and antisymmetric (sinuous) modes. These investigators mapped
out the amplitude development as well as the spatial structure of each mode. Kogan
et al. (2001) generated isolated streaks in a boundary layer over a blunt-nosed plate
by a thin wire placed upstream and normal to the leading edge. The wake behind
the wire has vorticity normal to the wall, and that vorticity is stretched and wraps
around the wall surface to form streamwise vortices, a process described by Goldstein,
Leib & Cowley (1992) and Ustinov (2001). Kogan et al. (2001) carried out detailed
measurement of the localized distortion in the boundary layer. The instability of the
resulting flow is yet to be studied.

Bakchinov et al. (1995) generated periodically distributed longitudinal vortices by
arranging roughness-element arrays in a regular spacing along the spanwise direction.
The otherwise spanwise-uniform flow was thus modulated in a periodic fashion by
these vortices, whose strength was controlled by the roughness height. For strong
modulation, inviscid-instability modes were found to develop out of the background
disturbances, and their frequencies are well above those of the unstable T–S waves in
the undistorted Blasius flow. For moderate modulation, instability waves with typical
frequencies of T–S waves can be observed, but they amplify more rapidly than when
the distortion is absent.

The artificially created distortions in these experiments are akin to Klebanoff modes.
The findings for the former may shed useful light on the instability of the streaks
induced by free-stream disturbance. There is evidence to suggest that despite the
different origins of the distortions, the instability mechanism of various perturbed
flows appears to be somewhat universal. However, it should be noted that the
distortions in these experiments are fairly large, being comparable with the mean
flow. Therefore caution must be exercised when relating them to the instability of
Klebanoff modes, whose magnitude rarely exceeds 10% of the free-stream velocity.

Direct experimental studies of the instability of the Blasius boundary layer in the
presence of the Klebanoff modes have been made by a number of investigators. The
relevant findings will be reviewed in Part 2.

Obviously, the instability of boundary layers subject to finite-amplitude steady
distortions is an interesting and important problem in its own right, and an attack on
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it requires a major numerical study. The main concern in the present paper, Part 1, is
with the sensitivity of the boundary-layer instability to a steady distortion. For this
purpose, it is appropriate to consider the case where the distortion is relatively weak.
Such weak distortions are important because they are the ones that are most likely
to arise from unavoidable small imperfections in the geometry of both laboratory
and actual technological flows. A weak distortion has the advantage of being more
amenable to analytical treatment, yet as we shall argue, the resulting simple model
may offer relevant insights into the case of stronger distortion.

There have been numerous theoretical studies of the instability of shear flows
(boundary layers or channel flows) perturbed by distortions in the form of streaks.
The interested reader is referred to a recent paper by Andersson et al. (2001) for
relevant references. Often the streaks were modelled in a rather ad hoc fashion. In the
present work, we insist that the distortions must be realizable, at least in principle, i.e.
they may be generated either by a certain excitation device or by external disturbances.
They must be appropriate (approximate) solutions to the Navier–Stokes equations.
To fix the idea, here we consider the instability of the steady distortion that has
been considered by Goldstein & Wundrow (1995), while in Part 2 the instability of
Blasius boundary layer perturbed by Klebanoff modes will be investigated. The basic
observation is that the Blasius profile has a small curvature near the wall, so that even
a small distortion may lead to an inflection point and hence to essentially inviscid
instabilities.

The essential physical and analytical insights can be gained by an asymptotic
approach based on the high-Reynolds-number assumption, which is the only means
for providing a self-consistent mathematical description of the key processes involved.
In § 2, we formulate the problem in this asymptotic framework, and derive the
appropriate scalings. In § 3, the mean-flow distortion induced by imposing a crossflow
velocity at a streamwise location is considered. The spanwise distribution of the
perturbation is allowed to be either localized or periodic. Since the streamwise
location of our interest is farther downstream than that considered by Goldstein
& Wundrow (1995), the relevant solution is thus essentially the large-distance limit
of the solution given by Goldstein & Wundrow (1995). The linear instability of the
perturbed flow is analysed in § 4. It is shown that with a stronger imposed crossflow,
instability modes that are different from those identified by Goldstein & Wundrow
(1995) may emerge, whether the distortion is periodic or isolated. The relation between
the mode identified in this paper and that in Goldstein & Wundrow (1995) will be
discussed. The spanwise length scale of these modes is comparable with that of
the mean-flow distortion, but their streamwise wavelengths are much shorter. The
nonlinear development of the instability modes is investigated in § 5. Finally in § 6,
we summarize the results and discuss their implications.

2. Formulation and scalings
Consider the two-dimensional incompressible boundary layer due to a uniform

flow U∞ past a semi-infinite flat plate. As in Goldstein & Wundrow (1995), a small-
amplitude spanwise-dependent motion is assumed to be imposed at a distance L

downstream from the leading edge of the plate (see figure 1). The Reynolds number
is defined as

R = U∞L/ν, (2.1)

where ν is the kinematic viscosity. We shall assume that R � 1.
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Figure 1. A sketch illustrating the problem and relevant scales. A crossflow is imposed at a
distance L from the leading edge, generating a pair of counter-rotating streamwise vortices,
between which a velocity deficit region forms. An inflection point appears in the wall layer at
a distance of O(σ 6/5L) further downstream, where inviscid instability occurs.

The flow is to be described in the Cartesian coordinate system (x, y, z), with its
origin at the location where the crossflow is introduced, where x, y and z denote
the streamwise, normal and spanwise directions respectively, and they are all non-
dimensionalized by δ = LR−1/2, the boundary-layer thickness at x = 0. The time
variable t is normalized by δ/U∞. The velocity (u, v, w) is non-dimensionalized by
U∞, while the non-dimensional pressure p is introduced by writing the dimensional
pressure as (p∞ + ρU 2

∞p), where p∞ is a constant and ρ is the fluid density.
The profile of the Blasius boundary layer, UB(y, xR−1/2), is a function of y and

xR−1/2. Since both the imposed distortion and the instability wave evolve over much
shorter streamwise length scales than that of the base flow, it suffices to approximate
UB(y, xR−1/2) by its local profile at x = 0 via a Taylor expansion

UB

(
y, xR−1/2

)
= UB(y, 0) + O

(
xR−1/2

)
. (2.2)

In the following, UB(y, 0) will be written as UB(y). As y → 0,

UB(y) → λ0y − λ2
0

48
y4 + . . . ,

with λ0 ≈ 0.33206.
Let Λ denote the dimensional characteristic length scale over which the spanwise

variation of the imposed distortion occurs (see figure 1). We assume that Λ is much
larger than the local boundary-layer thickness δ, i.e.

σ ≡ δ

Λ
� 1,

so that the variation of the distortion can be described by the slow variable

Z = σz. (2.3)

A crossflow εMW0(y, Z) is imposed at x = 0 by some excitation device. In the
laboratory this may be achieved by inserting a thin wire with a non-uniform cross-
section into the main part of the boundary layer. A small screen set normal to
the wall, as in the experiments of Asai et al. (2000), probably produces a similar
effect. The distortion produced by a small three-dimensional obstacle in a parallel
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shear flow was investigated by Lighthill (1957). The body size was taken to be much
smaller than the thickness of the background shear flow so that the viscous effect is
confined in the vicinity of the obstacle, while in the majority of the flow field, the
perturbation is governed by essentially inviscid dynamics. The effect of the obstacle
was then represented as a point (mass) source. Lighthill obtained the solution for the
case where the shear flow velocity nowhere vanishes. His solution therefore does not
directly apply to boundary-layer flows, for which UB = 0 at the wall, but Lighthill
pointed out that such flows could be treated by retaining the viscous terms in the
equations in a viscous sublayer near the wall. Another fact that needs to be carefully
considered is that for a wire whose spanwise non-uniformity occurs over a longer
length scale than the boundary layer thickness, its effect may be not treated as a point
source. In any case, further work is needed to link W0(y, z) directly to the shape of
the obstacle.

The mean-flow distortion due to a suddenly imposed crossflow εMW0(y, Z) is
analysed in detail by Goldstein & Wundrow (1995). They show that the solution for
the distortion in the wall region (viscous sublayer) could be obtained without detailed
knowledge of W0(y, Z) as a function of y. The mean-flow distortion evolves through
several distinct stages along the streamwise direction. In the region x = O(σ −1),
the flow is fully interactive, but the distortion in this region is too weak to affect
the instability. The important location for instability corresponds to x = O(σ 3R1/2),
where the streamwise velocity profile of the distorted flow develops an inflection
point in a viscous sublayer layer y = O(σ ), if the imposed crossflow has a magnitude
εM ∼ R−1/2(ln σ )−1. For a periodic distortion, a pair of oblique modes is in resonance
with the distortion if the spanwise wavelength of the former is twice that of the
latter. The characteristic streamwise wavelength of the instability modes is found
to be comparable with that of the mean-flow distortion. The growth rate induced
by the resonance has the same order of magnitude as that due to the viscosity
if σ =O(R−1/20), but is larger if σ � R −1/20. In the latter case, the instability is
primarily inviscid. The instability modes identified by them will be referred to as
Goldstein–Wundrow (G–W) modes.

Further downstream, the streamwise velocity of the distortion continues to grow
in proportion to x, but the wall region thickens like x1/3, with the consequence that
at a fixed value of y/σ , the curvature alteration eventually vanishes. As a result,
inviscid modes with O(Λ) streamwise length scale are stabilized due to the viscous
diffusion of the wall region. Of course, this resonance-induced instability relies on the
periodicity of the distortion in the first place, and does not take place if the distortion
is non-periodic (e.g. localized).

The main interest of the present paper will be localized distortions since distortions of
this form have been produced and studied in a number of experiments, as mentioned
in § 1. It will be shown that an inviscid instability may occur in a region farther
downstream than that considered by Goldstein & Wundrow (1995). This instability
also arises in the case of a periodic distortion.

The region in which this instability operates, as well as its characteristic time and
length scales, can be determined by a scaling argument based on three considerations.
First, suppose that at a typical streamwise location x ∼ l � O(σ 3R1/2), the wall
layer has width y ∼ σ̂ . Then the balance between the advection term UB∂u/∂x

and the diffusion term R−1/2∂2u/∂y2 in the streamwise momentum equation implies
that

σ̂

l
∼ R−1/2

σ̂ 2
. (2.4)
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Second, for the distortion to be able to induce an essentially inviscid instability, its
curvature must be comparable to the O(σ̂ 2) curvature of the Blasius flow in the wall
layer, that is

εD

σ̂ 2
∼ σ̂ 2, (2.5)

where εD stands for the magnitude of the streamwise velocity of the distortion. Note
that for the steady streak considered herein, its curvature in the wall layer is O(εD/σ̂ 2),
which is a factor σ̂ −2 larger than that in the main region. This feature turns out to
be important for the instability of the perturbed flow.

Third, given the likely appearance of an inflection point in the wall region of
y ∼ σ̂ , the classical Rayleigh scalings suggest that instability modes have O(σ̂ )
streamwise wavenumbers, while their growth rates would be O(σ̂ 4) (cf. Goldstein
& Durbin 1986). The crucial balance which enables us to describe this instability is
between the streamwise growth and spanwise modulation of the modes. This requires
that

σ̂ 5 ∼ σ 2. (2.6)

We shall come back to this point later.
It follows from (2.4) and (2.6) that the instability will operate in the region where

(see figure 1)

x ∼ l = O
(
R1/2σ 6/5

)
,

and so we introduce the variable

x̂ = x/
(
σ 6/5R1/2

)
(2.7)

to describe the spatial development of the distortion. That x̂ = O(1) corresponds to
xR−1/2 ∼ σ̂ 3 � 1 justifies the Taylor expansion (2.2). For x̂ = O(1), the instability
modes that the perturbed mean flow can support have streamwise wavelengths of
O(σ −2/5), much shorter than the O(σ −1) spanwise length scale of the distortion. The
phase speed is O(σ̂ ) or O(σ 2/5), so that the frequency is O(σ 4/5). The distorted flow
evolves over the length scale x ∼ σ 6/5R1/2, while the instability wave amplifies over
the length scale σ̂ −4. Therefore the dependence on x̂ is parametric and the quasi-
parallel flow approximation is valid provided that σ 6/5R1/2 � σ −4, i.e. σ̂ � R−1/14. This
condition is certainly satisfied since we will assume that σ̂ � R−1/20 so that the growth
rate induced by the distortion is at least comparable with that by viscosity (see § 4).
Without losing generality, in the rest of the paper we put

σ̂ = σ 2/5

on the basis of (2.6).

3. Solution for the mean-flow distortion
As mentioned earlier, the solution for the distortion was considered in detail by

Goldstein & Wundrow (1995). In the immediate vicinity of forcing, the flow is complex
and dependent on the initial forcing. However, an inflection point starts to emerge
only sufficiently downstream, i.e. during the flow relaxation phase. The inflection
point lies in a thin layer close to the wall. The velocity profile in this layer, which
controls instability, becomes independent of the normal distribution of the initial
forcing. For the purpose of the present paper, the required solution corresponds to
the downstream limit of that given by Goldstein & Wundrow (1995), and acquires
a similarity form, which describes both the normal distribution and the streamwise
variation of the distortion.
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In the main part of the boundary layer, the solution expands as

U = (UB + O(σ̂ 3)) + σ̂ 4UD + . . . , (3.1)

V = R−1/2[VB + σ̂VD + . . .], (3.2)

W = σ̄R−1/2σ −3/5[WD + . . .], (3.3)

P = R−1σ −9/5[PD + . . .], (3.4)

where for convenience we have put σ̄ = (ln σ̂ )−1. The solution is exactly the same as
that given by Goldstein & Wundrow (1995), namely

UD = U ′
B(D + σ̄ x̂HZ), VD = −UB(Dx̂ + σ̄HZ), WD = W0(y, Z), (3.5)

where D is a function of x̂ yet to be determined, and

H (y, Z) =

∫ y

0

[
W0(s, Z)

U ′
B(s)

− W0(0, Z)

λ0s

]
ds +

W0(0, Z)

λ0

ln y. (3.6)

As in Goldstein & Wundrow (1995), we assume that a generic condition

B(Z) ≡ W0(0, Z) 
= 0

is satisfied by the distortion.
The streamwise and spanwise velocities are reduced to zero across a viscous wall

region with a width of O(σ 2/5). The appropriate transverse variable is

Y =
y

σ 2/5
. (3.7)

The mean flow expands as

U = σ̂λ0Y + σ̂ 4
(
Ũ − 1

48
λ2

0Y
4 − 1

2
λ0x̂Y

)
+ . . . , (3.8)

V = σ̂ 2R−1/2
(
Ṽ + 1

4
λ0Y

2
)

+ . . . , (3.9)

W = R−1/2σ −3/5(W̃ + . . .). (3.10)

The governing equations are found to be

Ũx̂ + ṼY + W̃Z = 0, λ0Y Ũx̂ + λ0Ṽ = ŨYY , λ0YW̃x̂ = W̃YY . (3.11)

Note that the pressure is absent from the equations. The solution to these equations
satisfy the boundary conditions

Ũ = Ṽ = W̃ = 0 at Y = 0, (3.12)

as well as the matching condition with the main-deck solution:

Ũ → λ0D + σ̄ x̂B ′ ln(σ̂ Y ), W̃ → σ̄B as Y → ∞. (3.13)

Compared with the upstream solution of Goldstein & Wundrow (1995), the flow
acquires a simpler structure as it relaxes downstream. The solution for Ũ and W̃

now simply corresponds to the first terms of (3.43) in Goldstein & Wundrow (1995),
namely

Ũ = σ̄ x̂B ′(Z)F (η), W̃ = σ̄B(Z)G(η), (3.14)

where the similarity variable is defined as

η = (λ0/x̂)1/3Y. (3.15)

The functions F and G satisfy the equations

F ′′′ + 1
3
η2F ′′ − 2

3
ηF ′ = −G, G′′ + 1

3
η2G′ = 0. (3.16)
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They are subject to the boundary and matching conditions

F = F ′′ = G = 0 at η = 0, (3.17)

F → ln η, G → 1 as η → ∞. (3.18)

By matching, the displacement function D in (3.5) is found as

D =
σ̄ x̂B ′

λ0

{
ln

[
σ̂

(
x̂

λ0

)1/3]
− C1

}
, with C1 = lim

η→∞
(F − ln η).

The displacement effect is transmitted, via the main layer, to the upper layer with
O(σ −1) thickness, where a pressure field of O(R−1σ −9/5) is induced. But this pressure
is too weak to have a leading-order back effect on the viscous motion in the wall
layer.

Goldstein & Wundrow (1995) found that the solution can be expressed in terms
of special functions. Here we shall obtain it by solving the boundary-value problem
(3.16)–(3.18) numerically.

4. Linear instability
When x̂ = O(1), the distortion to the mean flow is still small in the whole flow field.

An important point to note is that in the viscous wall region the curvature of the
mean-flow distortion is comparable with that of the original Blasius flow, that is, the
curvature of the total mean flow is altered by O(1) in relative terms, and moreover
becomes spanwise-dependent. This leads to a fundamental change of the instability
property, which we now analyse.

As was indicated by the scaling argument in § 1, the admissible modes have
streamwise wavenumbers of O(σ̂ ), frequencies of O(σ̂ 2) and growth rates of O(σ̂ 4);
so we introduce

ζ = σ̂ αx − σ̂ 2ωt, X = σ̂ 4x, (4.1)

to describe the rapid oscillation and the relatively slow amplification of the modes
respectively, where α and ω are the scaled wavenumber and frequency. We expand α

and the phase speed c ≡ ω/α as

α = α0 + σ̂ α1 + . . . , c =
ω

α
= c0 + σ̂ c1 + . . . .

The most unstable modes that the perturbed flow can support must have a spanwise
length scale comparable with that of the distortion. Modes with a shorter spanwise
length scale may be treated in a quasi-planar manner, but they have smaller growth
rates, and moreover their phase speeds would be a function of Z, contradicting the
experimental observation of Asai et al. (2002) and Bakchinov et al. (1995) that the
phase speed is constant along the spanwise direction. Such modes will be discarded.
Therefore the spanwise variation of relevant instability waves is described by the
variable Z. In the main part of the boundary layer, the modes take the form, to
leading order,

u = εA(X, Z)ū1(y) eiζ + c.c. + . . . , (4.2)

v = −εσ̂αiA(X, Z)v̄1(y) eiζ + c.c. + . . . , (4.3)

w = εσ̂ 5/2AZ(X, Z)w̄1(y) eiζ + c.c. + . . . , (4.4)

p = εσ̂A(X, Z)p̄1(y) eiζ + c.c. + . . . , (4.5)

where ε represents the magnitude of the modes, and A is the amplitude function.
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Since the wavelengths of the instability modes are long compared with the
boundary-layer thickness, the linear instability problem is governed by a five-zoned
asymptotic structure that is akin to that for the upper-branch instability of the
unperturbed Blasius boundary layer (cf. Bodonyi & Smith 1981; Goldstein & Durbin
1986). It consists of the upper layer, the main layer, the Tollmien layer, the viscous
Stokes layer as well as the critical layer centred at the position where the basic flow
velocity equals the phase velocity c. These regions have thickness of order σ̂ −1, 1,
σ̂ , R−1/4σ̂ −1 and σ̂ 4 respectively. Here the width of the critical layer is determined
by requiring the small growth rate to remove the critical-layer singularity, i.e. the
non-equilibrium effect appears in the leading-order critical-layer equations.

The solution in each of these regions can be obtained by following what is now
a fairly routine procedure (see e.g. Wu, Stewart & Cowley 1996). Matching these
solutions gives the leading-order dispersion relation

c0 =
α0

λ0

, (4.6)

and the relation to determine the growth rate

AX − i

4α0

AZZ = (c+ − c−) +

[
λ2

0

2R1/4σ̂ 5(2α0c0)1/2
+ iχ0

]
A, (4.7)

where (c+ − c−) is the jump across the critical layer, and χ0 is a real constant which
does not have any effect on instability. In the linear regime (ε � 1),

c+ − c− = πc0YcΩA, (4.8)

where Yc = c0/λ0 is the scaled critical level, and Ω is the curvature of the perturbed
flow at the critical level

Ω = −c2
0

4
+ Ωc(Z), with Ωc = ŨYY (Yc, Z). (4.9)

Inserting (4.8) into (4.7) gives

AX − i

4α0

AZZ = (γ0 + γ (Z; x̂))A, (4.10)

where

γ0 = −πc4
0

4λ0

+
λ2

0

2R1/4σ̂ 5(2α0c0)1/2
, (4.11)

γ (Z; x̂) =
πc2

0

λ0

Ωc(Z) = πc2
0

(
x̂

λ0

)1/3

F ′′(ηc)B
′(Z) ≡ γ̃ (x̂)B ′(Z), (4.12)

with ηc = (c0/λ0)(λ0/x̂)1/3. Here use has been made of (3.14) and (3.15), and the
logarithmic factor σ̄ has been absorbed into the definition of B . Obviously γ0 is the
growth rate in the absence of the distortion, with the second term in γ0 representing
the contribution from the viscous Stokes layer, which is the sole instability mechanism
when the distortion is absent.

The derivation of (4.10) is underpinned by the property that the major curvature
alteration occurs in a wall layer. As is indicated by (4.10), in this case the curvature
alteration in the wall region is the sole quantity that characterizes the instability of
the perturbed flow; the distortion in the main part of the boundary layer turns out
to be largely irrelevant. As we will see in Part 2, the Klebanoff modes do not share
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the property of the distortion considered here, and consequently a separate analysis
is required.

Equation (4.10) can be viewed as a Schrödinger equation with a purely imaginary
potential iγ (Z). It admits solutions of the form

A = Φ(Z) e(a+γ0)X, (4.13)

where a is a complex constant, and Φ(Z) satisfies

ΦZZ = 4iα0(γ (Z) − a)Φ. (4.14)

The above equation together with appropriate boundary conditions forms an
eigenvalue problem to determine a. Clearly, the real part of a represents the
excess growth rate induced by the distortion or streak. As will be shown below, the
Schrödinger operator with a purely imaginary potential has a complex spectrum a.

Depending on the size of σ̂ , the instability may be of a quite different nature.
Equations (4.11) and (4.12) indicate that the growth rate due to the viscosity is
negligible if σ̂ � R−1/20 or equivalently if the magnitude of the streamwise velocity
of the distortion satisfies

εD � R−1/5.

This implies that when the distortion exceeds a threshold order of magnitude, the
instability becomes essentially inviscid with the growth rate

κ ≡ ar − πc4
0

4λ0

, (4.15)

although it may be argued that inclusion of the viscous growth in this case would
give a more general result.

When εD ∼ R−1/5, the distortion provides a modification to the viscous growth rate,
and the modes may therefore be viewed as a kind of modified T–S wave, even though
in the case of localized distortion they are not directly linked to the usual T–S waves
that exist in the zero-distortion limit; see further discussion below.

Thus far the localized and periodic distortions have been treated in a unified
manner. Subsequent analyses, however, have to distinguish these two cases.

4.1. Localized distortion

For a localized γ (Z), the boundary conditions are

Φ(Z) → 0 as Z → ±∞,

or more precisely

Φ(Z) → exp
(

∓(−4iα0a)1/2Z
)

as Z → ±∞, (4.16)

where the square root is taken to be the one with a positive real part.
A general result similar to the familiar ‘semi-circle theorem’ can be derived as

follows. Multiplying (4.14) by Φ and integrating from −∞ to ∞, and performing
integration by parts on the left-hand side, we obtain

−
∫ ∞

−∞
|Φ∗

Z|2 dZ = 4iα0

∫ ∞

−∞
(γ − a)|Φ|2 d Z, (4.17)

which implies that ∫ ∞

−∞
[γ − Re(a)]|Φ|2 dZ = 0.
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Figure 2. Shape of the distortion (4.19) for d = 0.6, 1, 3.

It can therefore be deduced that

min γ (Z) < Re(a) < max γ (Z). (4.18)

In fact the same result holds for the periodic case (see below).
The eigenvalue problem (4.14) with (4.16) is solved numerically for a spanwise

distribution of the form

B ′(Z) = B0 sech(Z/d) tanh Z, (4.19)

where d is a measure of the spanwise length scale of the distortion. Figure 2 displays
the shape for three values of d . The distribution is quite similar to that in the
experiments of Asai et al. (2000, 2001). A salient feature is that the distortion changes
its sign in the spanwise direction, indicating that in conjunction with a dominant
low-speed streak, there is also a region where the flow is accelerated by the distortion.
This is the consequence of the fact that the spanwise velocity of the distortion must
vanish at ±∞, which imposes the constraint∫ ∞

−∞
γ (Z) dZ = 0.

The effect of the streamwise variation of the distortion on the instability is
characterized by γ̃ (x̂), but in order to have a grasp of the general properties of
the problem, calculations were first performed for the artificial case where γ̃ = 1. The
variation of ar with B0 is plotted in figure 3 for two fixed values of d . It shows that
ar > 0 when the distortion exceeds a threshold magnitude Bc. Below Bc, the localized
mode does not exist. Instead there exists a continuous spectrum for which a is purely
imaginary so that Φ is only bounded at Z = ±∞. The continuous spectrum can be
viewed as the usual T–S waves whose shape is deformed by γ (z), but whose growth
rates are not affected. Though no detailed study has been made of the continuous
spectrum, it is clear that it eventually turns into the usual T–S waves when B0 → 0.
The existence of a threshold means that the localized modes do not directly reduce
to the usual T–S waves as the distortion is reduced; instead they merge into the
continuous spectrum at Bc.
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Figure 4. A typical spanwise distribution of the eigenfunction normalized by its maximum
(d = 3 and B0 = 4). Solid line: real part Φr ; dashed line: imaginary part Φi; dotted line: the
mean-flow distortion.

A typical distribution of the eigenfunction Φ is shown in figure 4. Clearly, the
instability mode is confined to the region of the mean-flow distortion, and decays
rapidly away from it. The mode is symmetric or varicose in nature. No anti-symmetric
(or sinuous) mode has been found. Asai et al. (2002) attributed the varicose modes
to the inflection point in the normal direction UYY = 0, and the sinuous modes to the
spanwise inflection point UZZ = 0. The former term is included in our theory, but the
latter is ignored. That the varicose modes are absent in our model is consistent with
Asai et al.’s conclusion, and also may be taken as indicating the importance of UZZ

in inducing the sinuous modes.
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Figure 5. Variation of the excess growth rate ar with d , the spanwise length scale of the
distortion. Here dc indicates the threshold scale for a localized mode to exist.

Figure 5 shows the variation of ar with d . For each fixed B0, there exists a threshold
dc above which a localized mode comes into existence. The growth rate increases with
the spanwise length scale d , and quickly saturates at the ‘two-dimensional limit’ when
d is large enough. This conclusion is in agreement with the experimental findings
of Asai et al. (2002), although in their experiments the distortion has a rather large
magnitude. It seems reasonable to suggest that the present simple theory captures
some generic features of the secondary instability caused by a steady streak.

Next we present the instability results for the particular distortion considered in § 3,
for which γ̃ depends on x̂, and is evaluated by solving (3.16)–(3.18) numerically. It is
found that F > 0 but F ′′ < 0, and as a result γ̃ < 0 (see (4.12)). Therefore according
to the result shown in figure 3, inviscid instability is possible only for B0 < 0, i.e.
when the distortion is characteristic of a low-speed streak. The present simple model
is consistent with this fundamental observation.

For a given B0, the inviscid growth rate κ(ω, x̂) as defined by (4.15) will be a
function of x̂ and ω = α0c0, the frequency of the instability mode. As is shown
in figure 6(a), in the streamwise region in which the distortion is significant, the
perturbed flow supports a band of instability modes, which lead to oscillation of the
streak. In figure 6(b), we plot the variation of the growth rate κ with x̂ for three
typical values of ω. As is illustrated, a mode with a suitable frequency experiences
amplification in a finite streamwise region, beyond which it decays. The spatial extent
and the frequency range of the unstable modes can be best demonstrated by plotting
the contours of the growth rate κ(ω, x̂) in the (x̂, ω)-plane (figure 7). For B0 = −6,
the perturbed flow is unstable in the streamwise window between x̂ ≈ 1.2 and x̂ ≈ 7.4
(figure 7a). The unstable frequency band varies with x̂, but roughly speaking the
overall range is between ω = 0.3 and 0.7. The frequency of the most unstable modes
at the upstream end is fairly small, but increases with downstream distance, implying
progressively more rapid streak oscillations. Figure 7(b) displays the growth-rate
contours for B0 = −7, and it indicates that for stronger distortion, the unstable region
becomes more spatially extended and the unstable modes become more broad-band.



Instabilities of a Blasius boundary layer. Part 1 239

(a)

0.20

0.15

0.10

0.05

0
0.2 0.3 0.4 0.5 0.6 0.7 0.8

�

6

4
3

x = 2ˆ

0.20

0.15

0.10

0.05

0

–0.05

–0.10
0 2 4 6 8

x̂

�

(b)

� = 0.37

0.45
0.50

�

Figure 6. Inviscid growth rates of localized modes for B0 = −6. (a) Growth rate κ as a
function of the frequency ω at typical streamwise locations. (b) Variation of κ with x̂ for a
fixed frequency ω.

4.2. Periodic distortion

Consider now a periodic distortion, i.e. γ (Z) = γ (Z + ld), where ld is the period.
Floquet theory suggests that Φ takes the form Φ = Φ̄(Z)eiµZ , where Φ̄(Z) is a
periodic function satisfying

Φ̄ZZ + 2iµΦ̄Z − µ2Φ̄ = 4iα0(γ (Z) − a)Φ̄, (4.20)

and µ is a real constant (in order for Φ to be bounded as Z → ±∞). Result (4.18) then
can immediately be derived by a procedure similar to that for a localized distortion
with the only difference being that the integration is now over a single period of the
distortion.

In general, γ (Z) has the Fourier representation γ (Z) =
∑

n=1 γn cos(2nβZ),
where 2β = 2π/ld is the wavenumber of the distortion, but for simplicity, we



240 X. Wu and J. Luo

(a)

0.8

0.7

0 1 2 3 4 5 6

�

1.4

1.2

1.0

0.8

0.6

0.4

0 5 10

x̂

(b)

�

0.6

0.5

0.4

0.3

0.2

x̂
7 8

0.2

15 20

Figure 7. Contours of growth rates for (a) B0 = −6 and (b) B0 = −7. The outermost contour
corresponds to the neutral curve κ(ω, x̂) = 0. The enclosed region represents the spatial and
spectral extent of the instability.

consider

γ = γ1 cos(2βZ). (4.21)

We can expand Φ̄ as a Fourier series so that

Φ(Z) =

∞∑
n=−∞

fne
i(nβ+µ)Z. (4.22)

Equation (4.20) describes a parametric resonance, which may be of subharmonic
or fundamental form. The former corresponds to n = 1, 3, 5, . . . and the latter to
n = 0, 2, 4, . . . in (4.22). These two cases can be treated on an equal footing by
allowing 0 � µ � 1. Inserting (4.21)–(4.22) into (4.16) leads to a system of linear
simultaneous equations of infinite dimension for fn, which is truncated at a finite
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threshold.

order. The resulting finite-dimensional system is solved numerically to determine a in
terms of µ.

For a weak distortion (γ1 � O(1)), a perturbation analysis can be performed to
give some analytical insight. Subharmonic parametric resonance occurs if a ∼ −iβ2.
The appropriate expansions are

a = −iβ2 + γ1a1 + . . . ,

Φ̄ = Φ̄0(Z) + γ1Φ̄1(Z) + . . . ,

µ = γ1µ1 + . . . .

}
(4.23)

Substitution of (4.23) into (4.20) gives rise to a sequence of equations for Φ̄0, Φ̄1,
etc. At leading-order, Φ̄0 is found to be a linear combination of e±iβZ , while the
requirement that Φ̄1 is free of any ‘secular term’ leads to

a1 = 1
4

− 4µ2
1β

2. (4.24)

This relation indicates that the most unstable mode has the growth rate

ar = 1
2
γ1.

The perturbation analysis indicates that the subharmonic modes exist for a arbitrarily
small distortion, and these modes reduce to the usual T–S waves as the distortion
strength goes to zero.

A similar perturbation analysis can be carried out for the fundamental resonance.
However, we find that to O(γ 2

1 ), a is purely imaginary, and it appears that unlike
subharmonic resonance, parametric resonance of fundamental type does not occur for
an arbitrarily small γ (Z) for the system under investigation. This will be confirmed
by our numerical solutions to (4.20).

The excess growth ar as a function of µ is presented in figure 8 for several values
of γ1. The subharmonic and fundamental resonances correspond to the vicinity of
µ = 0 and µ = 1 respectively. For small and moderate γ1, the subharmonic resonance
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dominates, with the maximum excess growth being given by µ = 0. It turns out that
the asymptotic approximation (4.24) is indistinguishable from the numerical solution
for γ1 up to 1.5, and is reasonably accurate for even larger γ1 provided µ is not too
large. The fundamental resonance occurs only when γ1 exceeds a threshold magnitude
γc. In this case, γc ≈ 2.92. Close to the onset of the fundamental resonance, the growth
is a minimum, and only when γ1 is sufficiently large does the growth becomes a weak
maximum. In this range of γ1, a very broad band of instability modes all have
comparable growth rates. These modes in general are quasi-periodic in Z.

We also calculated the growth rate κ for the distorted flow considered in § 3.
Figure 9 shows the variation of κ with x̂ for a fixed frequency. The values of γ1

here were chosen so that the excess growth is large enough to overcome the decay
rate associated with the curvature of the unperturbed Blasius profile. This requires
a fairly large γ1, for which the parametric resonance leads to broad-band instability.
For weaker distortions, κ is negative, although they still induce an excess growth rate
ar > 0.

5. Nonlinear instability
As an instability mode amplifies, nonlinear effects may become important. For an

instability wave with an asymptotically small growth rate, it is now well recognized
that the dominant nonlinear interactions will first take place within the critical layer
to produce a velocity jump across this layer. For reviews, see e.g. Goldstein (1994)
and Cowley & Wu (1994).

For the present problem, the nonlinear jump becomes comparable with the linear
jump when

ε = σ̂ 17/2. (5.1)

We shall assume that the Reynolds number R scales with σ̂ as

R−1/2 = rσ̂ 13 (5.2)



Instabilities of a Blasius boundary layer. Part 1 243

so that the viscous diffusion appears as a leading-order effect in the critical layer,
where r is a parameter of order one, reflecting the effect of viscosity. In passing,
we note that the the experiments of Bakchinov et al. (1995), which investigate the
instability of a Blasius boundary layer subject to a spanwise-dependent distortion,
point to the existence of a well-defined critical layer, in which the mode attains its
largest magnitude.

The nonlinear jump is the same as that calculated in Wu (1993) and Wu et al.
(1996). Inserting that jump into (4.7), we obtain the amplitude equation that describes
the nonlinear instability of the perturbed flow

AX − i

4α0

AZZ = (γ0 + γ (Z))A + iN (X, Z), (5.3)

where the nonlinear term

N =

∫ ∞

0

∫ ∞

0

K(ξ, η|s){ξ 3A(X − ξ )A(X − ξ − η)A∗
ZZ(X − 2ξ − η)

+ ξ 2ηA(X − ξ )[A(X − ξ − η)A∗
Z(X − 2ξ − η)]Z

+ ξ 3[A(X − ξ )A(X − ξ − η)A∗
Z(X − 2ξ − η)]Z} dξ dη, (5.4)

with

K(ξ, η|s) = exp(−s(2ξ 3 + 3ξ 2η)), s = 1
3
α2

0λ
2
0r.

In (5.3), the amplitude function has been suitably renormalized so that the coefficient
multiplying iN is unity. The amplitude A should match to the linear solution upstream,
and so we have

A → Φ(Z)e(a+γ0)X as X → −∞. (5.5)

It is worth pointing out that the ‘initial condition’ can be applied at −∞, because a
localized eigenmode exists in the linear limit. Equation (5.3) with γ ≡ 0 also describes
the nonlinear development of modulated instability waves on some spanwise-uniform
shear flows, but there the initial condition has to be imposed at X = 0 (Wu 1993).

The nonlinear amplitude equation (5.3) was first solved for the localized distortion.
The mode was chosen to be the most unstable one in figure 7(b), which is at x̂ ≈ 6.5
and has a frequency ω = 0.8. The nonlinear evolution of |A(X, 0)|, the amplitude
on the symmetry plane, is shown in figure 10(a) for three viscous parameter values.
Nonlinearity enhances the amplification, and apparently leads to a singularity at
a finite distance downstream. Viscosity delays the formation of the singularity but
cannot eliminate it. Figure 10(b) shows that the nonlinear effect deforms the shape
of the mode, and a singularity of self-focusing type appears to be forming at Z = 0.
When focusing occurs, the linear term γ (Z)A becomes secondary so that the main
balance becomes the same as that for the equation in Wu (1993). It may therefore
be expected that the singularity would have the same structure as described in Wu
(1993), where evidence supporting the proposed singularity was given. However a full
verification of the singularity proved hard, and has to be left for future work.

In the case of a periodic distortion, the nonlinear development of a fundamental
mode is shown in figure 11(a). The overall features are similar to the isolated case
(cf. figure 10a). The spanwise deformation of the mode is monitored by plotting the
real and imaginary parts of A against Z (figure 11b). The mode in the initial linear
stage is quite spread out, but nonlinearity causes it to focus towards the centre. This
implies that although the linear Floquet instability mechanism is ‘collective’, in the
nonlinear regime, the instability appears to be local in character. A comparison with
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figure 4 indicates that the shape of the Floquet mode in the nonlinear regime very
much resembles that of a linear local mode.

A periodic distortion supports the G–W mode as well as the Floquet mode described
above. A discussion of their relation is now in order. At a fixed streamwise location,
the instability properties are directly controlled by two parameters, σ and εD , which
characterize respectively the spanwise wavelength and the local magnitude of the
streamwise velocity of distortion. For a fixed spanwise wavelength (or equivalently σ ),
the G–W mode requires a smaller threshold, of O(σ 4), and therefore should emerge
first. As εD increases, the characteristic streamwise wavenumber and growth rate
of the G–W mode increase as well. The mode therefore becomes progressively ‘two-
dimensional’, and turns into the Floquet mode when εD ∼ σ 8/5. If εD is held fixed, then
(2.5) and (2.6) imply that distortion with a relatively long spanwise length, of O(ε5/8

D ),
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supports the Floquet mode, while distortion with a relatively short wavelength, of
O(ε1/4

D ) according to Goldstein & Wundrow (1995), supports the G–W mode.
The relation between the Floquet and the G–W modes can be better seen by

considering where they emerge and how they evolve for the same distortion, whose
overall magnitude is determined by the magnitude of the imposed crossflow. In
particular if the magnitude is as specified in the present study (see (3.10)), the Floquet
mode appears in the region where x ∼ σ 6/5R1/2, but the G–W instability operates at
upstream locations where x ∼ σ 3R1/2. In fact the upstream the G–W mode gradually
evolves into a Floquet mode (if the former does not become nonlinear).
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6. Discussion and conclusions
In this paper, we have shown that the instability of a Blasius boundary layer can be

significantly modified and even fundamentally altered by certain three-dimensional
distortions of relatively small amplitude. This occurs when the curvature of the
distortion becomes comparable to that of the Blasius profile in a suitable vicinity of
the wall. A self-consistent asymptotic theory is presented for distortions with spanwise
length scale larger than the boundary-layer thickness. Both localized and periodic
distortions are considered, and they can be treated on the same basis. The instability
of the perturbed flow is shown to be governed by a remarkably simple system, a
Schrödinger equation with a purely imaginary potential.

In the case of a moderate distortion which induces an excess growth rate comparable
to that due to viscosity, the instability modes can be viewed as kinds of modified
T–S waves. This modification is non-trivial however, because the spanwise shape is
dictated by the distortion. For a localized distortion, the modes do not reduce to the
usual T–S waves in the zero-distortion limit.

When the strength of the distortion exceeds a threshold order of magnitude,
essentially inviscid instability arises. A local distortion may induce a localized
instability mode, while a periodic distortion leads to quasi-periodic modes through
a parametric resonance. The characteristic streamwise wavelength of the instability
modes is much shorter than the spanwise length scale of the distortion, and their
characteristic frequency is higher than those of typical T–S waves on Blasius flow.
For the particular distortion considered in this paper, the instability occurs only
when the flow features a low-speed streak. Also, the instability occurs in a limited
streamwise window, and hence on a purely linear basis, the instability modes will die
out. However, they can enter a nonlinear regime if a significant magnitude is attained.
The continued nonlinear development of these modes is governed by a modified form
of the evolution equation derived by Wu (1993), and the nonlinear effect is found
to be strongly destabilizing, causing the amplitude to break down in the form of a
finite-distance singularity. In the case of an isolated distortion, the instability should
lead to patches of streak oscillation, which may well break down into turbulent spots.

While the theory is built upon a set of rather restricted asymptotic relations, it does
appear to be capable of capturing qualitatively some major laboratory observations.
For instance, the existence of a threshold magnitude and the occurrence of oscillation
patches are in agreement with the conclusions of Hamilton & Abernathy (1994). As
mentioned above, the theoretical prediction that the growth rate increases with the
spanwise length scale of the distortion is consistent with the measurements of Asai
et al. (2002). The predicted high-frequency nature of the inviscid unstable modes, as
well as the excess growth exhibited by T–S waves, are in line with the findings of
Bakchinov et al. (1995).

It should be noted that the distortions in the experiments are comparable with the
basic Blasius flow so that they must be governed by nonlinear as opposed to the
linear equations employed in our theory. Based on the above broad agreement, it
seems reasonable to argue that the nonlinear structure of the distortion should not
affect the qualitative features of the instability, and that the present simplified model
keeps the key physics of the instability. From the qualitative point of view, the failure
to describe the sinuous instability mode seems to be the only obvious shortcoming of
the model.
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